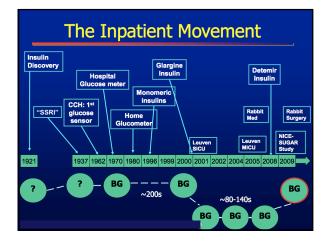
Inpatient Diabetes Management: The Slippery Slope of Sliding Scale Insulin

David Newman, MD University of North Dakota School of Medicine Sanford Health


Big Sky Conference 2017

Dr. David Newman, Personal/Professional Financial Relationships with Industry

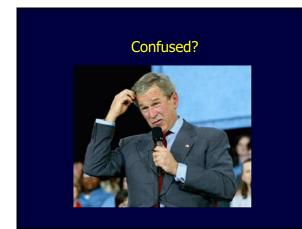
External Industry Relationships *	Company Name(s)	Role
Equity, stock, or options in biomedical industry companies or publishers	None	
Board of Directors or officer	None	
Royalties from from external entity	None	
Industry funds	None	

Learning Objectives

- Upon Completion of this conference, participants should be able to:
 - Define various forms of insulin and their durations of action
 - Describe the **blood sugar targets** in hospitalized patients
 - Recognize the outcomes associated hyperglycemia and hypoglycemia in the hospital
 - Evaluate **strategies to maintain euglycemia** in the inpatient setting

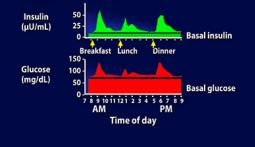
Early Cohort Studies & Randomized Trials

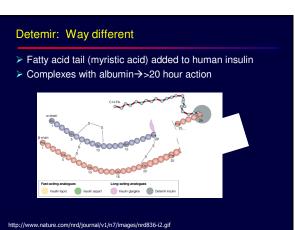
Study	Setting	Population	Clinical Outcome
Malmberg, 1995	ccu	Mixed	28%↓mortality After 1 year
Furnary, 1999	ICU	DM undergoing open heart surgery	65%↓infection
Furnary, 2003	ICU	DM undergoing CABG	57%↓mortality
Lazar, 2004	OR and ICU	DM undergoing CABG	60% ↓ A Fib post oj survival 2 yr
Krinsley, 2004	Med/Surg ICU	Mixed, no Cardiac	29%↓mortality
Van den Berghe, 2001*	Surgical ICU	Mixed, with CABG	34%↓mortality
Van den Berghe, 2006*	Medical ICU	Mixed	18%↓mortality

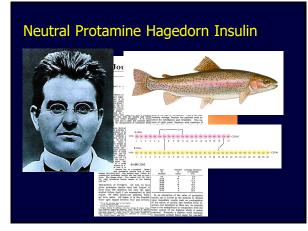

*RCT, randomized clinical trial. Kitabchi & Umpierrez. *Metabolism*. 2008;57:116-120.

General Inpatient medicine

- Intern: "Yeah, he also has diabetes, I think, he was insulin as an outpatient."
- Dr. Wiisanen: "So what should we do about his blood sugars?"
- Intern: "Maybe start some insulin?"




Insulin Basics

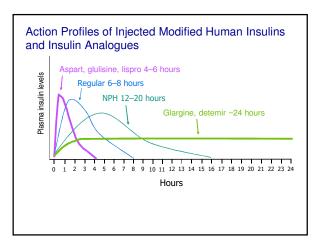

- ► Basal: Long Duration
- ➢ Bolus: Rapid Acting, Short Duration
 - Sliding Scale check whenever, give rapid acting insulin
 - Prandial rapid acting given before meals based on meal size
 - Corrective (Supplemental) rapid acting given before meals based on blood sugars

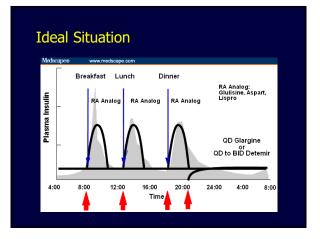
Physiologic Insulin Secretion: 24-Hour Profile

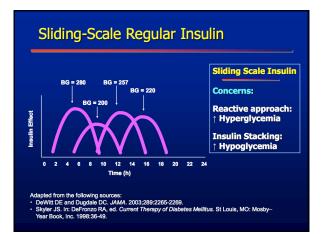
		Human Insulin Dimers and hexamers in solution
	Asp	Aspart Limited self-aggregation Monomers in solution
Lys	Giu	Glulisine Limited self-aggregation Monomers in solution
	Lys Pro	Lispro Limited self-aggregation Monomers in solution
	Gly Arg Arg	Glargine Soluble at low pH Precipitates at neutral (subcutaneous) pH

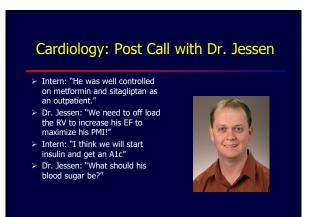
Available Insulin Formulations

Human Insulin

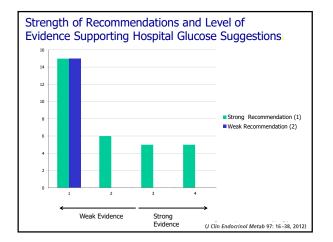

RegularNPH


- Mixed (70/30)


"Analog" Insulin Rapid acting > aspart (Novolog) > glulisine (Apidra) > lispro (Humalog)


Mixed ≻ Humalog 50/50, Humalog 75/25 ≻ Novolog 70/30

- Long acting > glargine (Lantus, Basaglar) > detemir (Levemir)



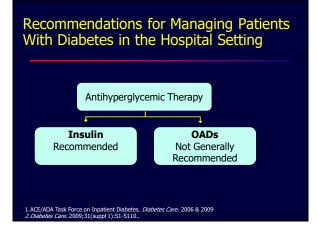
Clinical Guidelines for the Management of Hyperglycemia in Hospitalized Patients in a Non-Critical Care Setting

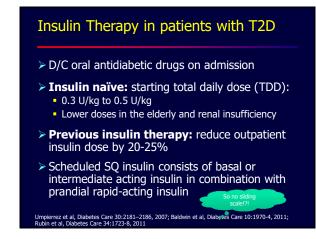
The Endocrine Society, European Endo Society, American Heart Association, American Diabetes Association, Society of Hospitalist Medicine, American Association of Diabetes Educators

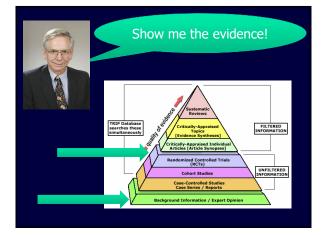
npierrez et al. J Clin Endocrinol Metabol. 97(1):16-38, 2012

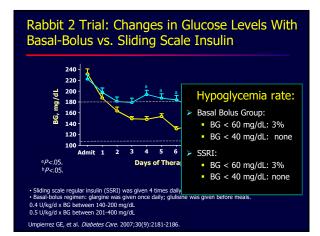
Diagnosis & recognition of hyperglycemia and diabetes in the hospital setting

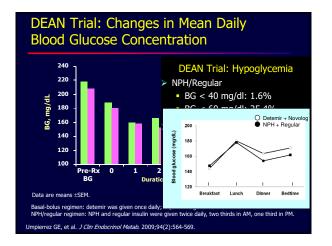
A1C for Diagnosis of Diabetes in the Hospital

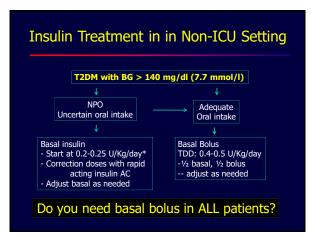

- > HbA1c should be measured in non-diabetic subjects with hyperglycemia (BG>140 mg/dl) and in subjects with diabetes if not done within 2-3 months prior to admission.
- > In the presence of hyperglycemia, a patient with HbA1c > 6.5% can be identified as having diabetes.
- > Implementation of A1C testing can be useful:
 - > assess glycemic control prior to admission > assist with differentiation of newly diagnosed diabetes
 - from stress hyperglycemia designing an optimal regimen at the time of discharge

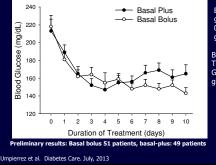

J Clin Endocrinol Metabol, 2012


Glycemic Targets in Non-Critical Care Setting

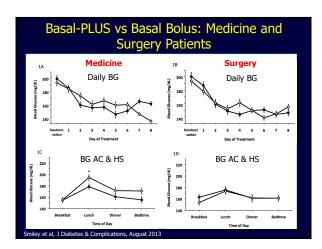

- 1. Premeal BG target of <140 mg/dl and random BG <180 mg/dl for the majority of patients.
- 2. Glycemic targets be modified according to clinical status.
 - For patients who achieve and maintain glycemic control without hypoglycemia, a lower target range may be reasonable.
 - Patients with terminal illness, a higher target range (BG <200 mg/dl) may be reasonable.
- 3. For avoidance of hypoglycemia, we suggest that diabetic therapy be reassessed when BG<100 mg/dl).


Umpierrez et al. J Clin Endocrinol Metabol. 97(1):16-38, 2012





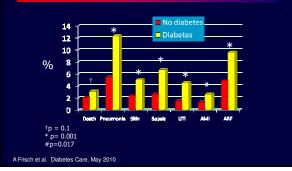
Basal Plus Correcti	on vs. Basal Bolus
Basal plus supplements	Basal Bolus Regimen
Starting glargine*: 0.25	Starting TDD*: 0.5 U/kg
units/kg	 Glargine: 0.25 U/kg
 Correction with glulisine for BG >140 mg/dl per sliding scale 	 Glulisine: 0.25 U/kg in three equally divided doses (AC)
* Reduce TDD to 0.15 U/kg in patients ≥70 yrs and/or serum creatinine ≥ 2.0 mg/dL	 Correction with glulisine for BG >140 mg/dl per sliding scale
Umpierrez et al. Diabetes Care. July, 2013	* Reduce TDD to 0.3 U/kg in patients ≥70 yrs and/or serum creatinine ≥ 2.0 mg/dL
omplettez et al. Diabetes Cale. July, 2015	

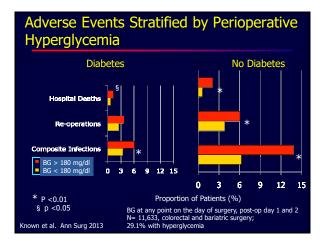

Basal-PLUS vs Basal Bolus: 300 medical & surgical non-ICU patients

Basal Plus: glargine once daily 0.25 U/kg plus glulisine supplements

Basal Bolus: TDD: 0.5 U/kg/d Glargine 50% glulisine 50%

Glycemic control and frequency of treatment failures in patients treated with basal bolus and basal plus regimens % BG > 180 mg/dl 1B 60 P=0.11 180 mg/dl % Treatment Failures 40 32 1C 27 % BG > 60 20 P=<0.01 Failure 40 0 Treatment Basal Bolus Basal Plus 20 5 2 Basal Plus 0 0 Basal Bolus Umpierrez et al. Diabetes Care. July, 2013



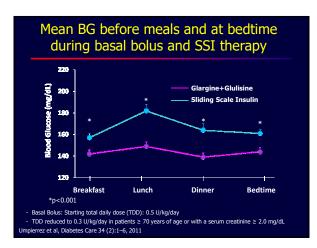

Oncology rounds with Dr. Glatt

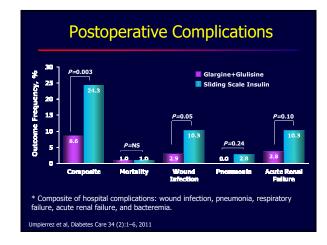
- Intern: "So he is having his tumor surgically removed on Thursday."
- Dr. Glatt: "Did you read last week's Blood, JAMA, and NEJM?"
- Intern: "No. Nobody does that."

Thirty Day Mortality and Inhospital Complications in diabetic and non-diabetic subjects Undergoing Non-Cardiac Surgery

Randomized study of basal bolus insulin therapy in the management of general surgery patients with T2DM (Rabbit Surgery)

Research Question:


In patients with T2DM on diet, oral agents or insulin treatment, does treatment with basal bolus regimen with glargine and glulisine is superior to SSRI?


Primary Outcomes:

•Differences between groups in mean daily BG

•Composite of hospital complications: wound infection, pneumonia, respiratory failure, acute renal failure, and bacteremia

errez et al, Diabetes Care 34 (2):1–6, 2011

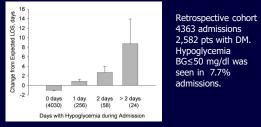
	Basal-bolus insulin	SSI	p-value
Number of patients	88	92	
Number of patients with complications*	6	22	0.002
Length of Stay (days)			
ICU	0.9 ± 0.5	2.7 ± 3.5	0.005
Hospital	7.3 ± 5.1	8.5 ± 5.9	0.15
Total Charges (US \$, K)	46.3 ± 25.3	53.9 ± 32.2	0.10
Total Cost (US \$, K ± SD)†	22.9 ± 12.0	26.8 ± 15.9	0.09
- Pharmacy	14.7 ± 10.2	17.9 ± 15.1	0.21
- Radiology	4.5 ± 6.1	14.5 ± 8.4	0.25
- Laboratory	72.3 ± 55.3	86.3 ± 9.2	0.65
- Consult service	10.4 ± 12.6	18.5 ± 29.0	0.21
- ICU	1.1 ± 0.3	2.7 ± 3.5	0.17
ifference (log transf CI -\$3303, \$7000 djusted without adji			

Endocrinology with Dr. Newman

- Dr. Newman: "What about their sugars?"
- Intern: "I did everything you said, and my patient's blood sugars still suck" ______
- Dr. Newman: "Work Harder"

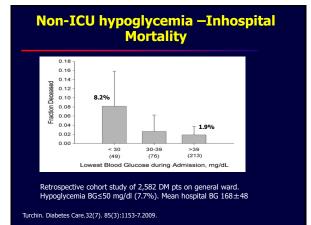
PROACTIVE REACTIVE

Tailoring Insulin Regimens


- Control any raised random reading by adjusting the dose of *previously* administered regular insulin.
- For example: a high post lunch reading will NOT be controlled by increasing the dose of next insulin (as in sliding scale), rather adjustment of the pre-lunch regular insulin on the next day will bring down raised reading to the required levels.

Dose Adjustments – Rabbit 2

Fasting BG	Adjustment		
100-140 mg/dl	No change		
140-180 mg/dl	Increase TDD by 10% daily		
>180 mg/dl	Increase TDD by 20% daily		
70-99 mg/dl	Decrease TDD by 10%		
<70 mg/dl	Decrease TDD by 20%		


- Only increase insulin if not getting values less than 100 during the day
- > Adjust for other factors (NPO, steroids,
- dialysis)

Non-ICU hypoglycemia –LOS

Multivariate analysis; LOS increased by 2.5 days compared with the average for the disease for each additional day with a hypoglycemic episode (P<0.001).

Turchin. Diabetes Care.32(7). 85(3):1153-7.2009.

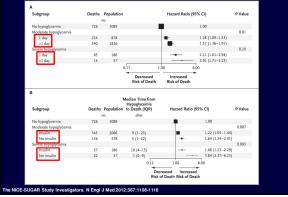
Inpatient (Non ICU) Summary

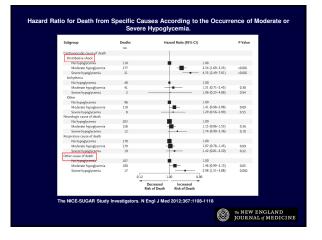
- ➤ Stop oral drugs
- ≻Use basal bolus therapy
- If previously on insulin, decrease outpatient regimen by 20%
- ➤ Starting insulin
 - 0.4 units per kg in most patients
 - Less if old or with kidney problems
 - More if sugars are over 200
 - Half basal and half bolus
- Targets 140 to 180

Intensive Care Unit

- Intern: "And her blood sugars are high. I think we should start insulin.
- Dr. Myrmoe: "Sounds good."
- Intern: "Do they need tight control?"
- Dr. Myrmoe: "Define tight"

Trial	N	Setting	Primary Outcome	ARR	RRR	Odds Ratio (95% CI)	P-value
Van den Berghe 2006	1200	MICU	Hospital mortality	2.7%	7.0%	0.94 [*] (0.84-1.06)	N.S.
Glucontrol 2007	1101	ICU	ICU mortality	-1.5%	-10%	1.10 [*] (0.84-1.44)	N.S.
Ghandi 2007	399	OR	Composite	2%	4.3%	1.0 [*] (0.8-1.2)	N.S.
VISEP 2008	537	ICU	28-d mortality	1.3%	5.0%	0.89 [*] (0.58-1.38)	N.S.
De La Rosa 2008	504	SICU MICU	28-d mortality	-4.2% *	-13%*	NR	N.S.
NICE-SUGAR 2009	6104	ICU	3-mo mortality	-2.6%	-10.6	1.14 (1.02-1.28)	< 0.05


Intensive Glucose Management in RCT


sdale DE, et al. CMAJ. 2009;180(8):821-82

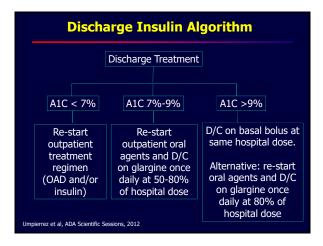
Intensive Insulin Therapy and Hypoglycemic Events in Critically Ill Patients

No. I	Events/Tota	Hypoglycemic Events			
Study	IIT	Control	Risk ratio (95% CI)	Favors IIT	Favors Contro
Van den Berghe et al	39/765	6/783	6.65 (2.83-15.62)	1	<u></u>
Henderson et al	7/32	1/35	7.66 (1.00-58.86)		
Bland et al	1/5	1/5	1.00 (0.08-11.93)		
Van den Berghe et al	111/595	19/605	5.94 (3.70-9.54)		
Mitchell et al	5/35	0/35	11.00 (0.63-191.69)		- 1 -
Azevedo et al	27/168	6/169	4.53 (1.92-10.68)		
De La Rosa et al	21/254	2/250	10.33 (2.45-43.61)		
Devos et al	54/550	15/551	3.61(2.06-6.31)		
Oksanen et al	7/39	1/51	9.15 (1.17-71.35)		- -
Brunkhorst et al	42/247	12/290	4.11(2.2-7.63)		
lapichino et al	8/45	3/45	2.67 (0.76-9.41)		
Arabi et al	76/266	8/257	9.18 (4.52-18.63)		
Mackenzie et al	50/121	9/119	5.46 (2.82-10.60)		
NICE-SUGAR	206/3016	15/3014	13.72 (8.15-23.12)		
Overall	654/6138	98/6209	5.99 (4.47-8.03)		• -
Griesdale DE, et al. Cl	MAT 2000-18	0(8)-821-8	77	0.1 1	10

NICE-SUGAR Trial: Hypoglycemia and Mortality

AACE/ADA Recommended Target Glucose Levels in ICU Patients

ICU setting:


- Starting threshold of no higher than 180 mg/dL
- Once IV insulin is started, the glucose level should be maintained between 140 and 180 mg/dL
- Lower glucose targets (110-140 mg/dL) may be appropriate in selected patients
- Targets <110 mg/dL or >180 mg/dL are not recommended

Not recommended Acceptable Recommended 110-140 Not recommended >180 >180								
loghissi ES, et al; AACE/AD.	A Innatient Glycemic Co	ntrol Consensus Panel	Endocr Pract 2000-15(4)					

General Medicine with Dr. Lien

- Intern: "Yeah, we found him a ride, so he can go home."
- Dr. Lien: "What about his diabetes"
- Intern: "He probably needs a meter."

Hospital Discharge Algorithm Based on Admission HbA1C for the Management of Patients with T2DM

Primary outcome:

- change in A1C at 4 wks and 12 wks after discharge

	All Patients	OAD	OAD + Glargine	Glargine+ Glulisine	Glargine
# patients, n (%)	224	81 (36)	61 (27)	54 (24)	20 (9)
A1C Admission, %	8.7±2.5	6.9±1.5	9.2±1.9	11.1±2.3	8.2±2.2
A1C 4 Wks F/U, %	7.9±1.7*	7.0±1.4	8.0±1.4ψ	$8.8 \pm 1.8 \psi$	7.7±1.7
A1C 12 Wks F/U, %	7.3±1.5*	6.6±1.1	7.5±1.6*	8.0±1.6*	6.7±0.8*
BG<70 mg/dl, n (%)	62 (29)	17 (22)	17 (30)	23 (44)	5 (25)
BG<40 mg/dl, n (%)	7 (3)	3 (4)	0 (0)	3 (6)	0 (0)

* p< 0.001 vs. Admission A1C; ψ p=0.08

Umpierrez et al, ADA Scientific Sessions, 2012

Special Situations

- ➤ Steroids
 - Need more insulin, especially mealtime
- ► Type 1 Diabetes
 - Don't stop basal insulin!
- ➤Insulin drips
 - Give basal insulin before stopping
- ➤Insulin pumps
 - Call endocrine

Summary

- > Targets almost always <u>**140 to 180**</u>
- Use <u>basal bolus therapy</u> instead of sliding scale bolus <u>before</u> eating!
- Be proactive instead of reactive
- Use <u>discharge</u> as an opportunity to tailor diabetes medications
- <u>Treat the patient, not the disease</u>

Thank you

David.Newman@sanfordhealth.org

